U.S. flag   An official website of the United States government
Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock (Dot gov) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

NOTICE UPDATED - April, 25th 2024

NIST has updated the NVD program announcement page with additional information regarding recent concerns and the temporary delays in enrichment efforts.

CVE-2021-32629 Detail

Current Description

Cranelift is an open-source code generator maintained by Bytecode Alliance. It translates a target-independent intermediate representation into executable machine code. There is a bug in 0.73 of the Cranelift x64 backend that can create a scenario that could result in a potential sandbox escape in a Wasm program. This bug was introduced in the new backend on 2020-09-08 and first included in a release on 2020-09-30, but the new backend was not the default prior to 0.73. The recently-released version 0.73 with default settings, and prior versions with an explicit build flag to select the new backend, are vulnerable. The bug in question performs a sign-extend instead of a zero-extend on a value loaded from the stack, under a specific set of circumstances. If those circumstances occur, the bug could allow access to memory addresses upto 2GiB before the start of the Wasm program heap. If the heap bound is larger than 2GiB, then it would be possible to read memory from a computable range dependent on the size of the heaps bound. The impact of this bug is highly dependent on heap implementation, specifically: * if the heap has bounds checks, and * does not rely exclusively on guard pages, and * the heap bound is 2GiB or smaller * then this bug cannot be used to reach memory from another Wasm program heap. The impact of the vulnerability is mitigated if there is no memory mapped in the range accessible using this bug, for example, if there is a 2 GiB guard region before the Wasm program heap. The bug in question performs a sign-extend instead of a zero-extend on a value loaded from the stack, when the register allocator reloads a spilled integer value narrower than 64 bits. This interacts poorly with another optimization: the instruction selector elides a 32-to-64-bit zero-extend operator when we know that an instruction producing a 32-bit value actually zeros the upper 32 bits of its destination register. Hence, we rely on these zeroed bits, but the type of the value is still i32, and the spill/reload reconstitutes those bits as the sign extension of the i32’s MSB. The issue would thus occur when: * An i32 value in a Wasm program is greater than or equal to 0x8000_0000; * The value is spilled and reloaded by the register allocator due to high register pressure in the program between the value’s definition and its use; * The value is produced by an instruction that we know to be “special” in that it zeroes the upper 32 bits of its destination: add, sub, mul, and, or; * The value is then zero-extended to 64 bits in the Wasm program; * The resulting 64-bit value is used. Under these circumstances there is a potential sandbox escape when the i32 value is a pointer. The usual code emitted for heap accesses zero-extends the Wasm heap address, adds it to a 64-bit heap base, and accesses the resulting address. If the zero-extend becomes a sign-extend, the program could reach backward and access memory up to 2GiB before the start of its heap. In addition to assessing the nature of the code generation bug in Cranelift, we have also determined that under specific circumstances, both Lucet and Wasmtime using this version of Cranelift may be exploitable. See referenced GitHub Advisory for more details.


View Analysis Description

Severity



CVSS 3.x Severity and Metrics:

NIST CVSS score
NIST: NVD
Base Score:  8.8 HIGH
Vector:  CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H

Nist CVSS score does not match with CNA score
CNA:  GitHub, Inc.
Base Score:  7.2 HIGH
Vector:  CVSS:3.1/AV:L/AC:H/PR:L/UI:R/S:C/C:H/I:H/A:N


NVD Analysts use publicly available information to associate vector strings and CVSS scores. We also display any CVSS information provided within the CVE List from the CNA.

Note: It is possible that the NVD CVSS may not match that of the CNA. The most common reason for this is that publicly available information does not provide sufficient detail or that information simply was not available at the time the CVSS vector string was assigned.

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have information that would be of interest to you. No inferences should be drawn on account of other sites being referenced, or not, from this page. There may be other web sites that are more appropriate for your purpose. NIST does not necessarily endorse the views expressed, or concur with the facts presented on these sites. Further, NIST does not endorse any commercial products that may be mentioned on these sites. Please address comments about this page to nvd@nist.gov.

Hyperlink Resource
https://crates.io/crates/cranelift-codegen Product  Third Party Advisory 
https://github.com/bytecodealliance/wasmtime/commit/95559c01aaa7c061088a433040f31e8291fb09d0 Patch  Third Party Advisory 
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5 Exploit  Third Party Advisory 
https://www.fastly.com/security-advisories/memory-access-due-to-code-generation-flaw-in-cranelift-module Third Party Advisory 

Weakness Enumeration

CWE-ID CWE Name Source
CWE-681 Incorrect Conversion between Numeric Types cwe source acceptance level NIST  
CWE-125 Out-of-bounds Read cwe source acceptance level NIST  
CWE-788 Access of Memory Location After End of Buffer Provider acceptance level GitHub, Inc.  

Known Affected Software Configurations Switch to CPE 2.2

CPEs loading, please wait.

Denotes Vulnerable Software
Are we missing a CPE here? Please let us know.

Change History

13 change records found show changes

Quick Info

CVE Dictionary Entry:
CVE-2021-32629
NVD Published Date:
05/24/2021
NVD Last Modified:
11/06/2023
Source:
GitHub, Inc.